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Abstract

Functional Reactive Programming (FRP) extends a host program-
ming language with a notion of time flow. Arrowized FRP (AFRP)
is a version of FRP embedded in Haskell based on the arrow com-
binators. AFRP is a powerful synchronous dataflow programming
language with hybrid modeling capabilities, combining advanced
synchronous dataflow features with the higher-order lazy functional
abstractions of Haskell. In this paper, we describe the AFRP pro-
gramming style and our Haskell-based implementation. Of particu-
lar interest are the AFRP combinators that support dynamic collec-
tions and continuation-based switching. We show how these com-
binators can be used to express systems with an evolving structure
that are difficult to model in more traditional dataflow languages.
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1 Introduction

Many interesting application domains arereactiverather thantrans-
formational. The input to a reactive system is not know in advance,
but arrives continuously as the program executes. A reactive sys-
tem is expected to interleave input and output, producing outputs
in response to input stimuli as they arrive. A common approach
to implementing reactive systems is to use asynchronous dataflow
programming language, such as Signal [11], Lustre [4], or Lucid
Synchrone [22]. In such languages, programs are built from a small
set of primitiveprocessing elementsand a set ofcomposition op-
erators. Complete programs are formed by using the wiring prim-
itives to compose processing elements into a hierarchical network
or directed graph structure. The dataflow programming model thus
provides a natural form of modularity for many applications, since
larger programs are composed hierarchically from smaller compo-
nents, each of which is itself a reactive program.

Haskell programs can be built in this style using lazy lists, as in theintera
t function. However, this approach is somewhat difficult
to use (hence the move from stream based to monadic IO) and does
not always yield the modular program designs that are needed for
large scale applications. Functional Reactive Programming (FRP)
serves to integrate reactivity directly in to the functional program-
ming style while hiding the mechanism that controls time flow un-
der an abstraction layer. Originally developed as part of the Fran
animation system [10], FRP has evolved in two distinct directions.
One use of FRP is as a “glue language” for combining host language
components in ways that have well defined resource use character-
istics; here the implementations compile directly to low level code
and the use of functions is somewhat restricted. The RT-FRP [26]
and E-FRP [27] systems are the result of this research. The other
use of FRP utilizes the full power of Haskell. Here, expressiveness
is the dominating concern. This approach has been used to create
DSLs embedded in Haskell for a number of complex domains such
as Frob[20] (robotics), FVision[21] (visual tracking), and Fruit[8]
(user interfaces).

The Haskell-based version of FRP has now evolved into AFRP
(Arrowized FRP) [8]. In AFRP, we make extensive use of John
Hughes’s arrow combinators [16] and Ross Paterson’s arrow nota-
tion [18]. AFRP gives Haskell programmers some, if not most, of
the expressive capabilities of synchronous dataflow languages, as
well as basic hybrid modeling functionality. Unlike most dataflow
languages,signal functions, the AFRP analogue to a dataflow pro-
cessing element, are first class objects. AFRP thus supports higher-
order network descriptions, allowing an unusual flexibility in de-
scribing structurally dynamic systems.
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This paper mainly examines two recent additions to AFRP:
continuation-based switching and dynamic collections of signal
functions. These additions take the capabilities for describing struc-
turally dynamic systems even further. Continuation based switch-
ing allows stateful signal functions to be started (i.e., connected to
an input signal), stopped (disconnected), and then resumed again,
potentially in a completely different part of the signal function net-
work, and without loosing any information about the internal signal
function state. Dynamic collections allow avaryingnumber of sig-
nal functions to be connected into a network, again without loss of
state information when the network structure is changed. There are
many application domains in which the dataflow style of program-
ming is natural, but where the highly dynamic structure of systems
has limited or prevented its use. We believe that the new AFRP
features considerably extends the applicability of the synchronous
dataflow style.

In order to ensure an efficient implementation (one that is free of
time and space leaks), signals (time-varying values) are not first
class entities in AFRP, unlike the signal functions operating on
them. This is one of the most substantial design differences be-
tween AFRP and earlier versions of FRP, for example Fran. While
the operational advantages of a specification free of time and space
leaks seems obvious enough, this design carries with it an appar-
ent loss in expressive power: in Fran, the first-class nature of sig-
nals meant that the programmer could directly express dynamic
collections of signals as a time-varying collection of time-varying
values. Continuation-based switching and dynamic collections of
signal functions give AFRP similar expressive power, but without
compromising operational aspects.

The paper also outlines an experimental feature supporting embed-
ding of subsystems with separate control of the time flow. This
allows subsystems to operate at different, user-controllable fideli-
ties, which is important for accurate simulation. It also allows the
construction of multi-rate systems, which addresses an important
operational concern. Furthermore, embedding offers a restricted
but robust form of time transformation, without the performance
problems associated with general time transformation encountered
in previous FRP implementations.

The rest of the paper is organized as follows. Section 2 first presents
basic concepts and AFRP fundamentals. It then continues with a
brief introduction to continuation-based switching and signal func-
tion collections. Section 3 presents AFRP in greater detail by way
of a fairly realistic example, inspired by work done on the FVision
language. The emphasis is on the new features of AFRP. This is
also where the experimental embedding functionality is discussed.
Section 4 then considers the efficient implementation of AFRP in
Haskell, including the ramifications of the new AFRP primitives.
Section 5 presents related work, and then follows a section on fu-
ture work and, finally, conclusions.

2 Arrowized Functional Reactive Program-
ming

2.1 Basic Concepts

Two key concepts in FRP are signals (or fluents, time varying val-
ues) and functions from signals to signals. In previous Haskell-
embedded implementations of FRP, signals were represented us-
ing an abstraction calledbehavior. All signals were implicitly con-
nected to a common input whose type varied with the application
domain. In Fran, this input contained the keyboard and mouse

events while in Frob the system input contained the robot sensor
information. This approach lacked modularity: it was impossible
to compose components that used different input sources. It also
brings an extra complexity to the semantics in the form of astart
timethat represents the time at which a component is “switched on”
with respect to the global input signal. Thus the behaviors were fun-
damentallysignal functionswhose input signal was the system in-
put from the start time forward. However, a primitive (runningIn)
was provided to regain signal semantics where needed. The result
was signals masquerading as signal functions, blurring the distinc-
tion between the two distinct notions.

Gradually it became clear that emphasizing the signal function as-
pect of the behavior abstraction (through combinators which allow
e.g. the composition of such functions or computing some form
of fixed point), while relegating signals to second class status, ap-
peared to have a number of significant operational advantages and
clarify semantical issues. There were also notational advantages
in that a syntactic distinction between signals and signal functions
was made. Taking this approach allowed us to recast FRP as an
instance of John Hughes’s Arrow framework, which directly gave
us firm theoretical underpinnings and allowed us to leverage Ross
Patterson’s work on arrow syntax.

AFRP uses theSF type to denote signal functions. Conceptually,
this is a function fromSignal to Signal:

SFa b = Signal a! Signal b

where

Signala = Time! a

for real-valued time. We reiterate that this is just a conceptual
model: only signal functions are first class entities; signals only
exist indirectly, through the signal functions. In particular, there is
no typeSignal in AFRP.

We can think of signals and signal functions using a simple circuit
analogy. Line segments (or “wires”) represent signals, with arrows
indicating the direction of flow. Boxes (or “components”) represent
signal functions. Signal functions are not curried: multiple input or
output signals are tupled together.

In order to ensure that signal functions are properly executable, we
require them to becausal: The output of a signal function at time
t is uniquely determined by the input signal on the interval[0;t℄.
All primitive signal functions in AFRP are causal and all signal
function transformations preserve causality.

2.2 Discrete and Continuous Time

The essential abstraction that our system captures istime flow. As
with the original FRP system, there are two distinct semantic do-
mains for expressing the progress of time:continuous timeanddis-
crete time.

In a program that uses continuous time semantics, the execution of
a program is an approximation to a continuous function of time.
Continuous time is especially useful in applications that model or
interact with the physical world. An advantage of this approach
is that the mechanism by which the discrete approximation to the
ideal semantics is obtained is hidden from the user. This removes a
very operational aspect of programming and gives the system free-
dom to choose the best possible approximation to the continuous
semantics. With continuous time there is no notion of “time steps”
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f

(a)arr f sf2sf1

(b) sf1 >>> sf2
sf 


(c) first sf sf1 


sf2 


(d) sf1 &&& sf2
sf 


(e)loop sf
Figure 1. Core Primitive Signal Functions

as a user-visible abstraction. Some constructs require conceptually
infinitesimal delays, but there is no general notion of the “next” or
“previous” time. Continuous time semantics are common in lan-
guages such as Simulink [24] or Modelica [17].

While continuous time is a useful abstraction, it can be difficult to
control the computational resources of a program when the mecha-
nism controlling time flow is opaque to the programmer. This can
lead to systems in which it is difficult to understand the operation
of a program or control exactly how computational resources are
allocated. Many systems use discrete time semantics in which time
is advanced in user-visible increments (steps). Here it is possible
to reason precisely about program semantics and computational re-
sources, but the program becomes less abstract. It also makes com-
position more difficult when subsystems operate at different rates.

FRP has traditionally bridged the gap between the continuous and
discrete worlds. Although this work preserves this mixed semantic
domain, we have paid more attention to the operational side of the
implementation. Some of the abstractions we present here are used
mainly to handle programming in the discrete time style. For ex-
ample, the distinction between immediate and delayed switching is
more useful in discrete time systems, and the way we currently han-
dle embedding breaks the basic abstractions for representing time
flow and is thus appropriate only for discrete time systems. While
we would encourage users to use the continuous part of our system,
we realize that it is often necessary to address operational aspects,
and thus we consider it of prime importance to provide the facilities
to do so.

2.3 Core Primitives

The core primitives for composing signal functions are shown in
figure 1. These are all standard arrow combinators and have sim-
ple, intuitive definitions that follow directly from the diagrams. For
example,arr is point-wise application:arr :: (a -> b) -> SF a b

arr f = \s -> \t -> f (s t)
and(>>>) is just reverse function composition:(>>>) :: SF a b -> SF b 
 -> SF a 
sf1 >>> sf2 = \s -> \t -> (sf2 (sf1 s)) t= sf2 . sf1
Note that the above definitions are in terms of the conceptual
continuous-time model. The actual implementation is based on dis-
crete sampling and is explained in detail in section 4.

The other three primitives provide mechanisms for specifying ar-
bitrary wiring structures, using pairing to group signals. We have
omitted the definitions, since they follow naturally from the above
wiring diagrams, but the type signatures are as follows:first :: SF a b -> SF (a,
) (b,
)(&&&) :: SF a b -> SF a 
 -> SF a (b,
)loop :: SF (a,
) (b,
) -> SF a b
Although signals are not first class values in AFRP, Paterson’s syn-
tactic sugar for arrows [18] effectively allows signals to be named.
This eliminates a substantial amount of plumbing, resulting in much
more legible code. In this syntax, an expression denoting a signal
function has the form:pro
 pat-> do [ re
 ]

pat1 <- sfexp1 -< exp1
pat2 <- sfexp2 -< exp2
. . .
patn <- sfexpn -< expnreturnA -< exp

The keywordpro
 is analogous to theλ in λ-expressions,pat
andpati are scalar patterns binding signal variables point-wise by
matching on instantaneous signal values,exp and expi are scalar
expressions defining instantaneous signal values, andsfexpi are ex-
pressions denoting signal functions. The idea is that the signal
being defined point-wise by eachexpi is fed into the correspond-
ing signal functionsfexpi , whose output is bound point-wise in
pati . The overall input to the signal function denoted by thepro
-
expression is bound bypat, and its output signal is defined by the
expressionexp. The signal variables bound in the patterns may
occur in the scalar expressions, butnot in the signal function ex-
pressions (sfexpi ). If the optional keywordre
 is used, then sig-
nal variables may occur in expressions that textually precedes the
definition of the variable, allowing recursive definitions (feedback
loops). The syntactic sugar is implemented by a preprocessor which
expands out the definitions using only the basic arrow combinatorsarr, >>>, first, and, ifre
 is used,loop.

For a concrete example, consider the following:sf = pro
 (a,b) -> do
1 <- sf1 -< a
2 <- sf2 -< b
 <- sf3 -< (
1,
2)d <- sf4 -< breturnA -< (d,
)
Here we have bound the resulting signal function to the variablesf,
allowing it to be referred by name. Note the use of the tuple pattern
for splitting sf’s input into two “named signals”,a andb. Also
note the use of tuple expressions for pairing signals, for example
for feeding the pair of signals
1 and
2 to the signal functionsf3.
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2.4 Stateful Primitives

Functions that are converted to signal functions byarr arestate-
less: the value of the output signal at timet depends only on the
value of the input signal att. AFRP also provides signal functions
that arestateful. Such primitives produce an output signal that may
depend not just on the input signal att, but at all times on[0;t℄.
A basic stateful primitive is theintegral1:integral :: Fra
tional a => SF a a
Theintegral primitive computes the time integral of its input sig-
nal. Integrating
onstant 1 yields the local time:lo
alTime :: SF a Timelo
alTime = 
onstant 1.0 >>> integral
2.5 Events

An eventis something which is understood as occurring at a sin-
gle, discrete point in time, having no duration, such as a mouse
button click or a signal exceeding some threshold. While many as-
pects of reactive systems are naturally modeled as continuous sig-
nals, i.e. total functions on a continuous interval of time, sequences
of events are best reflected by a discrete-time signal defined only
for the points in time at which the events occur. To model such a
discrete-time signal, we introduce theEvent type:data Event a = Event a -- an event o

urren
e| NoEvent -- a non-o

urren
e
We call aSignal(Event T) for some typeT an event stream. It
captures the idea of a discrete-time signal in that the value of the
signal is(Event v) for some valuev only at the time of an event
occurrence (the signal is “defined”), andNoEvent otherwise (the
signal is “undefined”). The valuev carried with an event may be
used to convey extra information about the occurrence.

The Event type is isomorphic toMaybe and is overloaded in the
same way, providing instances inFun
tor and other type classes.
The functiontag binds a given value to an event occurrence:tag :: Event a -> b -> Event btag e t = fmap (
onst t) e
Events can bemergedin a number of different ways. ThelMerge
function favors the left event in case of simultaneous occurrences:lMerge :: Event a -> Event a -> Event alMerge (Event v1) e2 = (Event v1)lMerge NoEvent e2 = e2
while mergeBy combines events that occur at the same time using
a user-supplied function:mergeBy :: (a->a->a)->Event a->Event a->Event amergeBy f (Event v1) (Event v2) = Event (f v1 v2)mergeBy f (Event v1) e2 = Event v1mergeBy f NoEvent e2 = e2
These functions are usually applied point-wise on event streams
yielding a merged event stream.

1The given signature is simplified: the real AFRP primitive sup-
ports integration of vectors.
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hold
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t1 t2 t1 t2

Figure 2. The hold function

Event streams may be synthesized from continuous signals. For
example,edge :: SF Bool (Event ())
is anevent sourcethat generates an event when a boolean signal
changes from false to true. Note that this signal function is stateful.

Another stateful primitive ishold, a signal function that turns an
event stream into a continuous signal by remembering the the most
recent value of an event:hold :: a -> SF (Event a) a
Figure 2 summarizes the semantics ofhold.

2.6 Switching and Signal Collections

The AFRP switching primitives enable composition of signal func-
tions by temporal sequencing: at discrete points in time, signalled
by events, controlled is switched from one signal function to an-
other. The simplest switching primitive isswit
h:swit
h :: SF a (b,Event 
)->(
->SF a b)->SF a b
Informally, swit
h sf sfk behaves as follows: At timet = 0,
the initial signal function,sf, is applied to the input signal of theswit
h to obtain a pair of signals,bs(type: Signalb) andes(type:
Signal(Event 
)). The output signal of theswit
h is bsuntil the
event streameshas an occurrence at some timete, at which point
the event value is passed tosfk to obtain a signal functionsf'. The
overall output signal switches frombs to sf' applied to a suffix of
the input signal starting atte.

The effect of switching may beobservedat the output of the over-
all signal function either immediately at the time of the switching
event or strictly after that time. That is, the question is whether
the output value at the time of the event is given by the last output
value of the signal function being switched out, or by the first value
of the signal function being switched in. The choice depends on
the application: delayed observation of the output from the newly
started signal function is sometimes needed to break cyclic depen-
dencies among signals. The AFRP library has two versions of every
switching function, one with and the other without the delay.

TherSwit
h function is similar toswit
h, except that the switch
is recurring: it will switch on every occurrence of an event stream
connected to its input, not just on the first occurrence. Given an
initial subordinate signal function, defining the overall output sig-
nal,rSwit
h creates a signal function that has two inputs: one for
the input signal passed in to the current subordinate signal function,
and the other for switching events, each carrying a new subordinate
signal function to replace the previous one:rSwit
h :: SF a b -> SF (a,Event (SF a b)) b
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The fact that events can carry signal functions nicely illustrates their
first class nature: signal functions are just like any other values.

Signal function collections are used to condense groups of signal
functions into a single signal function. The collection type is ar-
bitrary; it needs only to be in theFun
tor class. The simplest
operation groups signal functions sharing a common input:parB :: Fun
tor 
ol=>
ol (SF a b)->SF a (
ol b)
TheB suffix of parB signifies that, in the resulting signal function,
the input signal isbroadcast to all signal functions in the collection.
Sometimes, however, it is desirable to specify arouting function
that determines the input signal to be delivered to each element of
the collection; thepar primitive is provided for this purpose:par :: Fun
tor 
ol =>(forall sf . (a -> 
ol sf -> 
ol (b, sf)))-> 
ol (SF b 
)-> SF a (
ol 
)
This primitive will apply its first argument (the routing function)
point-wise to the external input signal and the collection of signal
functions to obtain a collection of (input sample, signal function)
pairs. Each signal function in the collection can thus be given its
own input sample. One way of thinking about the routing function
is as a way of controllingperception: the routing function deter-
mines the view of the world seen by each element of the collection.
This can be used to, for example, allow a set of objects to perceive
only their closest neighbor, or only those that are located in some
specified field of view.

While par andparB give us basic facilities for maintaining collec-
tions of signal functions, the collections are fundamentallystatic:
we cannot add or remove signal functions from the collection. For
dynamiccollections, we providepSwit
h, which allows the collec-
tion to be updated in response to events:pSwit
h :: Fun
tor 
ol =>(forall sf . (a -> 
ol sf -> 
ol (b, sf)))-> 
ol (SF b 
)-> SF (a, 
ol 
) (Event d)-> (
ol (SF b 
) -> d -> SF a (
ol 
))-> SF a (
ol 
)
The first two arguments are the routing function and initial collec-
tion, just as inpar. The third argument is a signal function that
observes the external input signal and the output signals of the col-
lection, producing an event that triggers collection update. When
the event occurs, the collection is reshaped by a function that pro-
duces a new collection given the value of the event.

The argument to the collection update function is of particular inter-
est: it capturescontinuationsof the running signal functions. Since
the continuations are plain, ordinary signal functions, they can be
resumed, discarded, stored, or combined with other signal func-
tions. This gives AFRP a capability that has not previously been
available in FRP: the ability to “freeze” running signal functions,
turning them back into first class values (with preserved state, of
course). In contrast, the collection argument passed to the routing
function contains running signal functions. Due to the rank-2 uni-
versal quantification ofsf, nothing much can be done with these,
except passing them on, effectively giving them second class status.pSwit
h is a “switch once” combinator; another version,rpSwit
h uses a recurring switch in the manner ofrSwit
h.

Although these switching combinators may appear complex and nu-
merous, there is an underlying structure and relationship between
all of the different switchers. For example,rSwit
h is defined in
terms ofswit
h using a simple recursive definition:rSwit
h :: SF a b -> SF (a, Event (SF a b)) brSwit
h sf = swit
h (first sf) rSwit
h'whererSwit
h' sf = swit
h (sf***notYet) rSwit
h'
In the above definition,(***) is a derived combinator for parallel
composition of two arrows, andnotYet is a primitive signal func-
tion that suppresses an event occurrence at timet = 0, but otherwise
behaves as the identity signal function:(***) :: SF a b -> SF 
 d -> SF (a,
) (b,d)notYet :: SF (Event a) (Event a)
The pSwit
h primitive is the most general of the switchers: all
other switchers can be defined in terms ofpSwit
h.

3 Example: Traffic Surveillance by Visual
Tracking

In this section we present an example that showcases various as-
pects of AFRP, in particular its capability to handle dynamically
changing system configurations and the role first class signal func-
tion continuations plays in that context. The setting of the example
is an imagined Unmanned Aerial Vehicle (UAV) for traffic surveil-
lance. We will focus on describing a small part of its control system
concerned with the detection of tailgating2 among the vehicles cur-
rently in the field of vision. Figure 3(a) shows the UAV over a
section of highway, and figure 3(b) the structure of the tailgating
detector when three cars are in view. As cars enter or leave the field
of view, or overtake, the structure of the tailgating detector must
change accordingly.

We chose this example because the dynamically changing situation
on the road provides a compelling case for employing the dynamic
features of AFRP. Since our primary concern is AFRP, not the fine
details of the example as such, we will make a number of simplify-
ing assumptions to keep the example concise. These simplifications
will not affect the essential structure of the solution.

3.1 Interfacing to the Physical World

In our example, the UAV is equipped with a video camera providing
a bird’s-eye view of the highway below it. The video processing
identifies and tracks individual ground vehicles, which we will just
refer to as “cars”. See figure 3.

Prior work in domain specific languages based on FRP has used
the XVision2 library. This has been imported into Haskell, and
together with AFRP it forms the basis for FVision, a language for
visual tracking [21]. For this example, we will thus assume that the
functionality for creating trackers for tracking of an individual car
in a video stream is available.

Once initialized, a tracker is just a signal function from video to
a suitably abstract representation of a car. It is important to realize
that trackers typically maintain internal state pertaining to the object
being tracked, such as the position of the object in the previous

2To drive dangerously close behind another vehicle.
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(a) UAV over highway.

1 2 3Highway:


Trackers:
 tr1 tr2 tr3

Tailgating


Detectors:
 tgd(1,2) tgd(2,3)

...

...

Video:


(b) Tailgating detector.

Figure 3. UAV for traffic surveillance.

video frame, making it possible to find the position in the current
frame efficiently. A tracker is thus astatefulsignal function.

To keep things simple, we will assume that it is enough to regard
the highway as a one-dimensional line. The position and velocity
of a tracked car are thus also one-dimensional. Restricting tracking
information to one dimension makes the tailgating detection some-
what inaccurate, since passing slowly in an adjacent lane will be
detected as tailgating3. However, the main point here is thestruc-
ture of the solution, and this structure would remain the same even
if a more accurate representation of world were used. Car positions
are measured relative to the point directly below the UAV; the posi-
tive direction coincides with the direction of travel of the UAV and
the cars directly below it. The car velocity, however, is assumed to
be absolutegroundvelocity, not velocity relative to the UAV. These
assumptions lead to the following type definitions:type Position = Double -- [m℄type Velo
ity = Double -- [m/s℄type Car = (Position, Velo
ity)
A car tracker has the following signature:type CarTra
ker = SF (Video, UAVStatus)(Car, Event ())
Here, Video is an abstract type representing a video frame.UAVStatus carries information such as current height and ground
velocity of the UAV, making it possible for the tracker to figure
out the scale of the received images and compute the ground posi-
tion and velocity of tracked objects. The event output indicates lost
tracking. Once tracking is lost, the last known position and velocity
becomes the final, constant value of theCar output signal.

3Driving in another driver’s blind-spot will also be detected as
tailgating, but we consider this to be a feature, not a bug.

3.2 Simultaneous Tracking of Multiple Vehi-
cles

Given trackers capable of tracking individual cars, we now have
to devise a way of tracking multiple cars simultaneously. This in-
volves running a number of trackers in parallel, taking into account
that the number of tracked cars will change dynamically as cars en-
ter and leave the field of vision. We assume that the arrival of a
new car is signalled by an event carrying a tracker. Cars leaving the
field of vision will cause the corresponding tracker to lose track-
ing, at which point we remove it from the collection of trackers.
Furthermore, each tracked car will be associated be with a distinct
identifier, giving each car in the system an identity. This yields the
following signature for the Multi Car Tracker (m
t):type Id = Intm
t :: SF (Video, UAVStatus, Event CarTra
ker)[(Id,Car)℄
Recall that trackers arestatefulsignal functions. Thus we need to
add trackers to and delete trackers from the collection of running
trackers without disrupting other trackers in the collection. The
AFRP parallel switchers allow us to achieve this by making the en-
tire collection of subordinate continuations available at the point of
switching. This allows us to add and/or delete trackers from the
collection, and then resume. While there are a number of parallel
switching combinators provided by AFRP, we usepSwit
h (see
section 2.6 for the type signature) because it allows the signal func-
tion that controls switching to observe the output of the entire col-
lection. This will enable us to remove a tracker from the collection
when a lost tracking event is detected.

In order to usepSwit
h, we first define a suitable collection type:data MCTCol a = MCTCol Id [(Id, a)℄instan
e Fun
tor MCTCol wherefmap f (MCTCol n ias) =MCTCol n [ (i, f a) | (i, a) <- ias ℄
The extra field of typeId is used for generating distinct identifiers.

We can now definem
t:m
t = pSwit
h route (MCTCol 0 [℄)addOrDelCTs(\
ts' f -> m
tAux (f 
ts'))>>> arr getCarswherem
tAux 
ts =pSwit
h route 
ts(noEvent --> addOrDelCTs)(\
ts' f -> m
tAux (f 
ts'))route (v,s,_) = fmap (\
t -> ((v,s),
t))
The routing functionroute simply passes on theVideo andUAVStatus part of the input to each running tracker. The event-
generating signal functionaddOrDelCTs, defined below, emits an
event, which in turn will cause a switch, whenever trackers need
to be added or removed. This event carries a function which will
perform the required mutation of the collection of signal function
continuations when applied in the continuation argument passed topSwit
h. ThepSwit
h continuation argument is invoked at the
time instant of the switching event. Thus, the signal function started
by the continuation will initially see the same instantaneous input
as the switch that switched into it. In this case, part of that input
could be an event indicating the arrival of a new car. Thus we need
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to ensure that this event does not cause a new switch immediately,
which would lead to an infinite loop. That is the purpose of the
constructnoEvent --> addOrDelCTs
which overrides the the initial output fromaddOrDelCTs withnoEvent, i.e. ensures that there will be no event occurrence at (lo-
cal) time 0.

The definition ofaddOrDelCTs is straightforward:addOrDelCTs = pro
 ((_, _, e
t), 
es) -> dolet eAdd = fmap addCT e
tlet eDel = fmap delCTs(
atEvents (getEvents 
es))returnA -< mergeBy (.) eAdd eDel
Any external tracker creating event is tagged with a function that
will add the carried tracker to the collection of trackers. Similarly,
from a list of events carrying the identities of trackers that has lost
tracking, we form an event carrying a function that will remove
those trackers from the collection. Finally we merge the two result-
ing event signals into a single signal usingmergeBy. The function
supplied tomergeBy is used to resolve the conflict in the case of
simultaneous event occurrences. In this case we just use ordinary
function composition to join the addition and deletion functions.

3.3 Detection of Tailgating

We now turn our attention to defining what the system’s notion of
tailgating should be. Since tailgating involves two cars, we will
capture this notion using a binary predicate. However, to avoid
capricious judgements, we want to evaluate the behavior of a po-
tential tailgater over some amount of time, rather than at a single
instant. Tailgating thus becomes atemporalpredicate, which we
can model with the following signature:tailgating :: SF (Car, Car) (Event ())
The following criteria are good enough for defining tailgating for
the purpose of our example:

1. car 1, the potential tailgater, is behind car 2;

2. the absolute speed of car 1 is greater than 5 m/s;

3. the relative speed of the cars is within 20 % of the absolute
speed;

4. car 1 is no more than 5 s behind car 2; and

5. over an interval of 30 s, the average distance between the cars
is less than 1 s.

Note that we measure distance in seconds, i.e. distances are nor-
malized by dividing by the absolute speed. Also, to avoid reporting
tailgating in a situation where the traffic is at a virtual standstill, we
insist on a certain minimum speed.

Let us proceed ground up. We first define a signal function for
computing the average distance (in seconds) between two cars. This
is just a matter of integrating the normalized distance (nd(t)) and
divide by the time passed:

nd= 1
t

tZ
0

nd(t)dt

However, we have to be careful with what we mean by “average” at
time 0, when no time has passed. Since, as long asf is continuous
at t = 0,

lim
t!0

1
t

tZ
0

f (t)dt = f (0)
we just return the instantaneous normalized distance at that point.
These equations are rendered as follows in AFRP:avgDist :: SF (Car, Car) TimeavgDist = pro
 ((p1, v1), (p2, v2)) -> dolet nd = (p2 - p1) / v1ind <- integral -< ndt <- lo
alTime -< ()returnA -< if t > 0 then ind / t else nd
Next, we define a temporal predicate which repeatedly evaluates the
average distance over 30 second periods, and emits an event if the
average distance was less than 1 s.tooClose :: SF (Car, Car) (Event ())tooClose = pro
 (
1, 
2) -> doead <- re
ur (snapAfter 30 <<< avgDist)-< (
1, 
2)returnA -< (filterE (<1.0) ead) `tag` ()
This is a bit ad hoc: it would be better to compute a running average
over the last 30 s. But that would require the use of a 30 s delay,
and AFRP currently does not support that kind of time shifting op-
eration.

Finally we insist that the instantaneous conditions for tailgating (the
first four criteria) be satisfied before allowingtooClose to deter-
mine the outcome of the test.tailgating = provided follow tooClose neverwherefollow ((p1, v1), (p2, v2)) =p1 < p2 && v1 > 5.0&& abs ((v2 - v1) / v1) < 0.2&& (p2 - p1) / v1 < 5.0
The combinatorprovidedprovided :: (a->Bool)->SF a b->SF a b->SF a b
applies its first argument point-wise to the input signal and switches
into its first or second argument as the lifted predicate changes be-
tweenTrue andFalse, respectively. The combinatornevernever :: SF a (Event b)
is an event source that never has an occurrence.

3.4 Detection of Tailgating in a Group of Ve-
hicles

In order to check for tailgating among all cars in view, we have to
run a tailgating detection predicate for each pair of potential tail-
gater and tailgatee. Under our assumption of a one-dimensional
world, this just amounts to running a predicate for each pair of ad-
jacent cars in the field of view; see figure 3(b). We are going to
use a parallel switch to maintain the collection of tailgating detec-
tors. Thus we need a suitable collection type. Since each tailgating
detector is related to two cars, a collection where each element is
labelled by a pair of car identifiers will fit the bill.
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newtype MTGDCol a = MTGDCol [((Id,Id), a)℄instan
e Fun
tor MTGDCol wherefmap f (MTGDCol iias) =MTGDCol [ (ii, f a) | (ii, a) <- iias ℄
The signature for the Multi Tailgating Detector (mtgd) is as follows:mtgd :: SF [(Id, Car)℄ (Event [(Id, Id)℄)
It receives a time-varying list of cars from the currently running
car trackers where each car is associated with its identifier. When
an instance of tailgating is detected, that is signalled by emitting
an event identifying the tailgater and tailgatee. Though unlikely,
it could be the case that two or more instances of tailgating are
detected simultaneously. Thus each tailgating event actually carries
a list of tailgater and tailgatee identifier pairs.

Since we need to run a tailgating detector for each pair of adjacent
cars, we need to monitor the input list of cars and detect any change
in the adjacency relation; i.e. cars entering or leaving the field of
view or overtaking each other. Any such change is an event that
should cause a switch into a new configuration. Sorting the list into
order by car position facilitates change detection as well as routing
the right pair of cars to each tailgating detector. As to which flavor
of parallel switch to use, note that switching in this case does not
depend on the output from the subordinate signal functions. Thus
the recurring, parallel switch,rpSwit
h, is suitable:rpSwit
h :: Fun
tor 
ol =>(forall sf . (a -> 
ol sf -> 
ol (b, sf)))-> 
ol (SF a b)-> SF (a, Event (
ol (SF b 
)->
ol (SF b 
)))(
ol 
)
UsingrpSwit
h, mtgd can be defined as follows:mtgd = pro
 i
s -> dolet i
s' = sortBy relPos i
seno <- newOrder -< i
s'etgs <- rpSwit
h route (MTGDCol [℄)-< (i
s', fmap updateTGDs eno)returnA -< tailgaters etgswheretailgaters ::MTGDCol (Event ()) -> Event[(Id,Id)℄tailgaters (MTGDCol iies) =
atEvents [e `tag` ii | (ii,e) <- iies℄
The signal functionnewOrder detects changes in the adjacency re-
lation:newOrder :: SF [(Id, Car)℄ (Event [Id℄)
It works by simply comparing the order among the cars at the pre-
vious time instant with the current order. Whenever they are not the
same, an event is generated carrying a list detailing the new order.

The purpose ofroute is to route each pair of adjacent cars to the
corresponding tailgating detector. We will order the collection of
tailgating detectors by car position. Thus the routing is just a matter
of zipping a list of of adjacent cars with the list of running tailgating
detectors. Here is the code:route i
s (MTGDCol iitgs) = MTGDCol $let 
s = map snd i
sin [ (ii, (

, tg))| (

, (ii, tg)) <- zip (zip 
s (tail 
s))iitgs℄

Figure 4. Animating the Tailgating Detector

Then we need to tag each change event with a function that up-
dates the collection of tailgating detector continuations to reflect
the new situation. Recall that each tailgating detector is a state-
ful signal function. Thus, if two cars that were adjacent before
a change event also are adjacent after that event, then the tailgat-
ing detector pertaining to these two cars should be kept running
across the event. On the other hand, tailgating detectors for cars no
longer adjacent must be terminated. Finally we also need to start a
tailgating detector for any new pair of adjacent cars. The functionupdateTGs computes an updated collection of tailgating detectors
given the new order and the collection of continuations for the pre-
viously running detectors.updateTGDs is (MTGDCol iitgs) = MTGDCol[ (ii, maybe tailgating id (lookup ii iitgs))| ii <- zip is (tail is) ℄
Note the use oflookup for finding the continuations for the detec-
tors that should keep running. Wheneverlookup fails, that means
that we have a new pair of adjacent cars, and therefore a new in-
stance of the tailgating detector should be started.

Finally, we can tie the individual pieces together into a signal func-
tion that finds tailgaters:findTailgaters ::SF (Video, UAVStatus, Event CarTra
ker)([(Id, Car)℄, Event [(Id, Id)℄)findTailgaters = pro
 (v, s, e
t) -> doi
s <- m
t -< (v, s, e
t)etgs <- mtgd -< i
sreturnA -< (i
s, etgs)
3.5 Visualization

We have applied the functional reactive programming model to a
wide variety of problem domains, such as control systems, com-
puter vision and graphical user interfaces. Using AFRP as a com-
mon framework for these disparate domains has a number of ben-
efits, such as enabling us to use a common vocabulary across do-
mains, development of a library of domain-independent data- and
time-flow patterns, and easy composition of systems with compo-
nents drawn from different domains. For example, although the
tailgating detector is really a problem from the domain of control
systems, we were able to use Fruit, our AFRP-based graphical user
interface toolkit [8], to quickly and easily develop an animated visu-
alization of this application. A screenshot of this interface is shown
in figure 4. The animated graphical user interface took less than
two hours to develop, did not require any modification to the orig-
inal tailgating detector or highway simulation, and is about fifty
lines of code.

To start, we require a function that, given a car’sId and whether or
not it is a tailgater (aBool), returns aPi
ture of the car:
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arPi
 :: Int -> Bool -> Pi
ture
arPi
 i isTG =let
ols = [red, orange, yellow, green,blue, 
yan, magenta, pink℄
arColor = 
ols !! (i `mod` (length 
ols))drawBorder =if isTGthen pi
FlatBorder (2,2,2,2) redelse pi
FlatBorder (1,1,1,1) bla
k
arLabel =(withFont 
arFont $ pi
Text (show i))<++> withColor white pi
Mono
hromeinpla
e origin $ drawBorder $ withAlpha 0.65 $pi
FlatBorder (2,10,2,10) 
arColor 
arLabel
Note thatPi
ture, above, denotes a static (non-animated) image,
and hence the function above is just an ordinary Haskell function,
not a signal function. The<++> operator is image composition
(sometimes called̀over`), and$ is low-precedence function ap-
plication (to reduce the need for parentheses). The body of
arPi

specifies that the car picture consists of the car’sId on a white
background, enclosed in a rectangular border in the car color (de-
termined by the car’sId), enclosed in a smaller rectangular border
that is either black or red, depending on whether the car has been
flagged as a tailgater. A translation is applied withpla
e to posi-
tion the upper-left hand corner of the picture at theorigin
The output offindTailgaters is a pair of signals, where the first
signal is a list of(Id, Car) pairs, and the second is an(Event(Id,Id)) signal indicating a tailgating occurrence. To make the an-
imation task simpler, we will write a stateful signal function that ac-
cumulates the tailgating events into a time-varying set of tailgaters,
and uses this to produce an enriched time-varying list of cars, in
which each car has a flag indicating whether or not it has ever been
identified as a tailgater:a

umFlagged :: SF ([(Id,Car)℄,Event [(Id,Id)℄)[(Id,Car,Bool)℄a

umFlagged = pro
 (i
s, tge) -> dotgs <- a

umHold [℄ -<fmap (\tgPairs->(union (map fst tgPairs)))tgereturnA -< map (\(i,
) -> (i,
,i `elem` tgs))i
s
The a

umHold is used to accumulate the tailgating event into a
time-varying set of allIds that have been observed as tailgaters.
The output signal simply maps over the(Id,Car) pairs, checking
for membership in in the set of tailgaters (tgs).

Finally, we can write a function that, given a list of cars and their
tail-gating status, returns aPi
ture of the UAV’s perception of the
highway:tgPi
 :: [(Id,Car,Bool)℄ -> Pi
turetgPi
 f
s =letdrawCar (
id,(pos,_),istg) =translate (ve
tor (pos*ppm+200) 100) %$
arPi
 
id istg
arPi
s = map drawCar f
shwyPi
 = foldr (<++>) pi
Empty 
arPi
sin hwyPi


In the above definition, each car is translated by a displacement
vector, which will result in the upper-left-hand corner of the car be-
ing positioned at(200;100), plus a horizontal offset determined by
the car’s position relative to the UAV. Like
arPi
, this definition
just defines how a static picture is computed from asnapshotof the
list of cars, and hence is just an ordinary Haskell function, with no
AFRP code.

With these definitions in place, animating the tailgating detector is
essentially just a matter of using serial composition (>>>) to com-
posefindTailgaters, a

umFlagged and arr tgPi
. Usingarr tgPi
 lifts tgPi
 from operating on values to operating on
signals: given atime-varyinglist of cars,arr tgPi
 returns atime-
varyingPi
ture, that is, an animation.

3.6 Embedding

Because AFRP is used as the foundation of both the animated
graphical user interface and the UAV control system, we could exe-
cute the above composition directly to produce an animation. How-
ever, this results in executing the tailgating detector and the user
interface in the same time frame, which has some significant draw-
backs:� The simulation of the tailgating detector can happen no faster

(or slower) than real time, since the user interface executes in
real time.� The fidelity of the simulation is affected by the performance
of the user interface, since complex rendering may require the
implementation to either sample less frequently or drop output
frames.

The first point indicates that there actually are two logically distinct
time frames in the composed system: one is the real-time of the
external world, in which the graphical user interface operates; the
other is the simulated time frame of the tailgating simulation. They
are logically related, but not necessarily through some simple, static
time transformation function since the user may want to speed up
or slow down the simulation at will. Compare fast-forwarding a
video recording over uninteresting commercials, and then freezing
at particularly exciting points for detailed scrutiny.

The second point is an operational concern. Ideally, an implemen-
tation would automatically arrange so that various subsystems are
executed at optimal rates by judiciously balancing efficiency and
real-time considerations on the one hand against numerical accu-
racy on the other, ensuring that the overall system behavior is a
sufficiently good approximation of the conceptual continuous se-
mantics. In practice this is very hard to do, and user intervention
is probably going to be required for the foreseeable future. For
example, while there exist sophisticated numerical simulation algo-
rithms that adjust the size of the time steps automatically, the selec-
tion of the right such algorithm for the problem at hand has thus far
not been successfully automated. Automatic partitioning into sub-
systems when there are conflicting requirements on the step sizes
would also appear to be very difficult.

To address these issues, AFRP has an experimental primitive calledembedSyn
h which creates a separate time frame in which a sub-
system can be executed at a user-definable logical sampling rate.
The embedded and the embedding time frames are synchronized at
a controllable ratio, which allows the embedded time frame to be
sped up or slowed down with respect to the embedding frame.
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The signature ofembedSyn
h (slightly simplified) isembedSyn
h ::SF a b -> (a, [(DTime, a)℄) -> SF Double b
The first argument is the signal function that is being embedded.
The second is a discretized representation of the input signal in the
form of an interleaving of sample values and time steps. This es-
tablishes the embeded time frame. The result is a signal function
where the input signal dynamically controls the ratio between the
embedded and the embedding time frame. Of courseembedSyn
h
is rather operational. It is also overly simplistic in some ways; for
example, for simulation purposes, one might rather want the ability
to choose the employed integration method, and have that method
control the step size. But it is at least a start.

We use theembedSyn
h primitive to embed the UAV simulation
and tailgating detector in the user interface. Thus the simulation
gets its own time frame, with a simulated input signal and sampling
fidelity that are completely independent of the user interface. The
rate at which the output signal of the embedded signal function is
sampled (relative to the user interface’s time frame) can be con-
trolled by the user interface, using the numeric up/down control to
the right of the animation in figure 4.

Note that embedding is related to the idea oftime transformation
that has been implemented in some of the original FRP systems.
While embedding in some ways is less expressive than the general
transforms offered by those systems, it does not suffer from the
operational problems associated with general time transformations,
and it effectively allows transformation by a dynamic function (i.e.,
a signal), rather than a static one.

4 Implementation

Elliott [9] described a number of different approaches to functional
implementations of Fran, the first language in the FRP family. One
approach is based on synchronized stream processors. This ap-
proach was pursued further by Hudak and Wan [15, 25], and later
also formed the basis for an early implementation of AFRP. Our
current implementation uses continuations, inspired by a similar en-
coding used in the implementation of Fudgets [3]. In this section,
we briefly review the synchronous stream-based implementation,
present our alternative continuation-based encoding, and describe
some simple enhancements to the continuation-based encoding that
enable dynamic optimizations.

4.1 Synchronized Stream Processors

In the stream-based representation of signal functions, signals are
represented as time-stamped streams, and signal functions are just
functions from streams to streams:type Time = Doubletype SP a b = Stream a -> Stream bnewtype SF a b = SF (SP (Time,a) b)
TheStream type above can be implemented directly as a (lazy) list
in Haskell, as described by Hudak [15].

In the above definition, each signal function (SF a b) is imple-
mented as a Haskell function from a time-stamped stream ofa val-
ues to a stream ofb values. Time stamps may be omitted from the
output stream because the implementation issynchronous: at every
time step, a signal function will consume exactly one value from

the head of its input stream and produce exactly one value on its
output stream.

While a stream-based implementation is adequate for many pur-
poses, it does have some substantial deficiencies:� The synchronous nature of every primitive signal function is a

critical requirement, but is not explicit in the implementation
structure. That is, we require that each stream process con-
sume exactly one input sample from its input stream and pro-
duce exactly one output sample on its output stream at every
time step, but this is not explicit in the above type definition.� At the implementation level, there is no way to identify signal
functions that only react tochangesin the input signal. As
a consequence, sampling must occur at every time step, even
though the program will only react to specific input events.
Identifying signal functions that only react to changes in in-
put would enable the implementation to make a blocking call
to the operating system until an appropriate event occurs, a
substantial performance improvement.� The implementation does not retain enough information to do
any runtime optimization of the dataflow graph.� It does not seem to be possible4 to implement first-class sig-
nal function continuations in a stream-based implementation,
since the connection between a signal function and its input
stream is hidden in a closure.

Since first-class signal function continuations are central to the way
we handle structurally dynamic systems, we consider it essential
to use an alternative representation of signal functions, presented
below.

4.2 Continuation-Based Implementation

The Fudgets [3] graphical user interface toolkit is based on asyn-
chronous stream processors. In [3], Carlsson and Hallgren present
an alternative to theStream a -> Stream b representation of
stream processors based oncontinuations. Inspired by this, we have
adopted a continuation based representation for AFRP. However,
since we are working in a synchronous setting, there are substan-
tial differences from the Fudgets implementation. A similar repre-
sentation, called “residual behaviors”, was explored as a possible
implementation for Fran in [9].

We will start by explaining a simplified version of the signal func-
tion representation, shown below. Optimizations will be discussed
later.type DTime = Doubledata SF a b =SF f sfTF :: DTime -> a -> (SF a b, b) g
In this implementation, each signal function is encoded as atran-
sition function. The transition function takes as arguments the
amount of time passed since the previous time step (DTime), and
the current instantaneous value of the input signal (a). The time
deltas are assumed to be strictly greater than 0. We will return to
the question of what the first time delta should be below.� a continuation(of typeSF a b), determining how the signal

function will behave at the next time step;

4At least not without stepping outside Haskell.
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� an output sample(of type b), determining the output at the
current time step.

The top-level function responsible for animating a signal function
(calledrea
timate) runs in an infinite loop: It reads an input sam-
ple and the time from the external environment (typically via an I/O
action), feeds this sample value (and correspondingDTime) to theSF’s transition function, and writes the output sample to the envi-
ronment (also typically via an I/O action). The loop then repeats,
but uses thecontinuationreturned from the transition function on
the next iteration.

4.3 Implementing Primitives

Most of the AFRP primitives have clear and simple implementa-
tions as continuations. For example:
onstant :: b -> SF a b
onstant b = SF fsfTF = \ _ _-> (
onstant b,b)gidentity :: SF a aidentity = SF fsfTF = \ _ a -> (identity,a)g
Of course these are just special cases of the point-wise lifting oper-
ator,arr:sfArr :: (a -> b) -> SF a bsfArr f = SF fsfTF = \ _ a -> (sfArr f,f a)g
The above primitives are allstateless. This fact is obvious from
their definitions: the continuation returned from the transition func-
tion is exactly the signal function being defined. As an example
of a statefulsignal function, here is a simple implementation ofintegral:integral :: Fra
tional a => SF a aintegral = SF fsfTF = sfAux 0gwheresfAux :: Fra
tional a =>a -> DTime -> a -> (SF a a, a)sfAux a

 dt a = (SF fsfTF = tfg, a

)where tf = sfAux (a

 + a*realToFra
 dt)
The auxiliary functionsfAux uses partial application to capture the
internal state of the integral in the accumulator (a

) argument of
the transition function.

Many of the higher-order primitives (those that accept signal func-
tions as arguments) are also straightforward. For example serial
composition:(>>>) :: SF a b -> SF b 
 -> SF a 
(SF fsfTF = tf1g) >>> (SF fsfTF = tf2g) =SF fsfTF = tfgwheretf dt a = (sf1' >>> sf2', 
)where(sf2', 
) = tf2 dt b(sf1', b) = tf1 dt a
This definition follows naturally from the semantic definition of se-
rial composition given in section 2.3. The transition function (tf)
simply feeds the input sample andDTime to the first signal function
(tf1) to obtainsf1' andb, feeds the resulting sample andDTime
to tf2 to obtainsf2' and
, and returns a continuation that is the
composition of the continuationssf1' andsf2', along with the

output sample value
.

4.4 Encoding Variability

The continuation-based representation ofSF allows for simple, pre-
cise operational definitions for the various combinators. However,
this representation, while simple and general, hides some informa-
tion that is potentially useful for optimization. For example, the
concrete representation ofSF makes no distinction betweenstate-
lessandstatefulsignal functions.

To enable some simple runtime optimizations (described in the next
section), we add extra constructors to the concrete representation ofSF that encode certain predicates about the signal function. We also
add a separate type for the initial continuation, since there is no
delta time to be fed in at the very first time step:data SF a b = SF fsfTF :: a -> (SF' a b,b)gdata SF' a b= SFGen fsfTF' :: DTime -> a -> (SF' a b,b)g| SFArr fsfTF' :: DTime -> a -> (SF' a b,b),sfAFun :: a -> bg| SFConst fsfTF' :: DTime -> a ->(SF' a b,b),sfCVal :: bg
Each of the constructors still carries a transition function. The in-
terpretation of the constructors is as follows:

SFGen denotes the most general case of a signal function, where
there is no particular “extra” information known about the
transition function.

SFArr denotes a point-wise or “pure” signal function. At any time
t, the output signal att depends only on the input sample at
t (but not on the time since the last sample). Since a point-
wise function is “stateless”, the continuation is always just the
same signal function regardless of the input sample orDTime.

SFConst denotes a signal function that has “gone constant”. The
output value and continuation for a constant signal function
do not change from one sample to the next, regardless of input
sample orDTime value.

Formally, we can specify the properties captured by the constructorsSFArr andSFConst by means of two predicates,isArr andisConst:nextSF :: SF a b -> DTime -> a -> SF a bnextSF sf dt a = fst ((sfTF sf) dt a)sampleSF :: SF a b -> DTime -> a -> bsampleSF sf dt a = snd ((sfTF sf) dt a)
isGen(sf) = True
isArr(sf) = 8a:8dt:((nextSF sf dt a)= sf) ^8a:8dt1;dt2:(sampleSF sf dt1 a)=(sampleSF sf dt2 a)

isConst(sf) = isArr(s f) ^8a1;a2:8dt1;dt2:(sampleSF sf dt1 a1)=(sampleSF sf dt2 a2)
The first part of the conjunction forisArr asserts thatsf’s continua-
tion issf itself. The second part asserts that the sample value is the
same regardless of the time delta (dt) between samples. The pred-
icate isConstextendsisArr with the requirement that the sample
value is independent of delta time or input sample.
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Since the first part ofisArr specifies that the same signal function
is returned as the continuation for the next time step, it follows triv-
ially by induction thatisArr andisConstwill hold for all subsequent
samples of a signal function, and that same value will be returned
for all subsequent samples of a constant signal function. Also note
that the following implications hold:

isConst(sf) ) isArr(sf)) isGen(sf)
Making the variability of signal functions explicit in the constructor
enables two key optimizations:� At the level whererea
timate interacts with the operating

system, knowing that a signal function isSFConst or SFArr
makes it possible to avoid redundant polling. For example, a
signal function with variabilitySFArr reacts only to changes
in its input signal, not the progression of time. This enablesrea
timate to make a blocking call to the operating system
while waiting for an input sample, avoiding redundant polling.
At present, the utility of this is limited, but the idea could be
carried further by refining the constructors.� The information about signal functions encoded in each of
these constructors enable certain dynamic optimizations to the
dataflow graph, based on some simple algebraic identities.

4.5 Simple Dynamic Optimizations

As a signal function is animated, every signal function in the
dataflow graph returns a new continuation at every time step. En-
coding variability information in constructors enables the imple-
mentation to simplify the data flow graph if the graph reaches cer-
tain states as it is animated. For example, consider the AFRP prim-
itive on
e:on
e :: SF (Event a) (Event a)
This is a stateful filter that will only pass thefirst occurrence of its
input signal to its output signal. Although the transition function
for on
e has variabilitySFGen at initialization time, after the input
signal has had an event occurrence, the continuation returned byon
e will be equivalent to
onstant NoEvent, with variabilitySFConst, and will therefore have no subsequent occurrences.

Such information can be used to optimize the dataflow graph dy-
namically by exploiting simple algebraic identities. For example,
our implementation of serial composition exploits the following
identities:sf >>> 
onstant 
 = 
onstant 

onstant 
 >>> arr f = 
onstant (f 
)arr f >>> arr g = arr (g . f)
Our optimized implementation of serial composition uses pattern
matching to identify the above cases; the implementation follows
directly from the above identities, with a default case to be applied
when none of the above optimizations are applicable.

We also provide optimized versions of some of the other wiring
combinators, such asfirst, using the identities:first (
onstant b) = arr (\(_, 
) -> (b, 
))(first (arr f)) = arr (\(a, 
) -> (f a, 
))
One special case that we would have liked to encode in our con-
structors wasSFId, to indicate the special case of the lifted identity

function,arr id. For example, considerinitially :: a -> SF a a
This function behaves as the identity function, except at the instant
t = 0, where its first argument (the initial value) is used as the output
sample. If we could capture the fact that a signal function has be-
come(arr id) in the representation ofSF', then we could exploit
identities such as:first (arr id) = arr id
Unfortunately, it appears that we would need dependent types to
exploit such a constructor, since the type of the transition function
(sfTF') is too general. We could potentially keep around an extra
function as a “proof” that we can perform the required coercions,
but then the resulting code is no more efficient than usingSFArr in
the first place.

One last point to is that we must be careful to when propagating
variability information. For example, even if both arguments to a
switch areSFArr, the resulting signal function is stillSFGen. This
is becauseswit
h in itself is a stateful operation. We have explored
adding another constructor toSF' that basically would capture the
case that something could beSFArr for a while. This would yield
more opportunities for blocking I/O. However, it is not part of the
current implementation.

5 Related Work

Functional Reactive Programming grew out of Conal Elliot and
Paul Hudak’s work on Functional Reactive Animation [10]. Since
then, the basic FRP framework has been implemented in a num-
ber of different ways, many of which have not been well de-
scribed or published. Synchrony and continuous time have always
been central aspects of FRP. This directly relates it to synchronous
(dataflow) languages like Esterel [1], Lustre [4, 12], and Lucid Syn-
chrone [6, 22] on the one hand, and to hybrid automata [14] and
languages for hybrid modeling and simulation, like Simulink [24],
on the other.

AFRP is intended to be a robust and expressive implementation of
FRP, capable of describing reactive systems with a highly dynamic
structure, such as graphical user interfaces or vision-based robot
control systems [19], while retaining the fundamental advantages
of the synchronous programming paradigm. Performanceguaran-
teesfor space and time have so far been a secondary concern, al-
though we have gone to great lengths to ensure that the system runs
as smoothly as possible in practice. This puts AFRP in marked con-
trast to synchronous languages, as well as the RT-FRP line of work
[26], where central aspects are guaranteed reactivity, execution in
bounded space and time, and efficient implementation (including
compilation to digital circuits [2]), but at the expense of requiring
a fairly rigid system structure. For example, the closest thing there
is to aswit
h-like construct in Lucid Synchrone is a reset operator
[13], which causes a stream computation to start over.

AFRP shares with hybrid systems languages an inherent notion of
continuous time and event-like abstractions for capturing discrete
aspects of a system. However, the underlying numeric machinery
of AFRP is currently much more simplistic than what is typical
for hybrid modeling and simulation languages. For example, accu-
rate location of the time of an event occurrence is often considered
critical and requires complex algorithms in combination with lan-
guage restrictions to be computationally tractable. Similarly, these
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languages often use sophisticated algorithms for integration with
variable step size to ensure rapid computation as well as accurate
results. The AFRP implementation does not currently do any of
this. However, the ability of AFRP to express structurally dynamic
systems, which typical hybrid modeling languages cannot deal with
cleanly, makes it an interesting topic of future research to attempt
to address such numerical concerns within AFRP.

Fudgets [3] has been a source of inspiration for the AFRP imple-
mentation. However, the asynchronous nature of Fudgets make it
fundamentally different from AFRP. There is certainly an overlap of
possible application domains (such as graphical user interfaces), but
for areas where time and synchrony is inherent (animation, hybrid
systems), we believe that a synchronous language is the obvious
choice.

The continuation-based implementation of AFRP also bears a clear
resemblance to other work in the area, such as the co-iterative
characterization of Lucid Synchrone [5], the operational semantics
of RT-FRP [26], and the “residual behaviors” implementation of
Fran [9].

FranTk [23] provided support for dynamic collections and included
a highly optimized implementation of the Fran core. However,
FranTk’s underlying Fran implementation was fundamentally im-
perative (depending onunsafePerformIO behind the scenes), and
FranTk presented an imperative interface to the programmer (via
the GUI monad) for creation or re-shaping of the dataflow graph.
The imperative implementation resulted in some substantial seman-
tical issues (including a basic flaw in referential transparency) that
were never clearly resolved. In contrast, AFRP does not resort
to unsafePerformIO or imperative programming in either the in-
terface or the implementation. One drawback to our approach is
that there are a number of undocumented aggressive optimizations
present in FranTk’s implementation that we, thus far, have been un-
able to include in our implementation.

6 Future Work

Our long-term goal is to produce an implementation of AFRP that
combines the expressive power of synchronous dataflow languages,
hybrid modeling languages, and Haskell, while executing programs
in a reasonable amount of time and space. Since these goals, ex-
pressiveness and firm performance guarantees, are often at odds
with each other, one could imagine a setting where performance
aspects, along the lines of Lucid Synchrone’s clock calculus or RT-
FRP, are checked throughsoft type systems. Thus the user would
have the power to make the best trade-off between expressiveness
and performance for the problem at hand while remaining within
a uniform framework. For example, in complex control systems,
typically only some parts of the system have true real-time require-
ments. Thus, for some parts of the system, the full expressive power
of AFRP can be used, while other parts where real-time perfor-
mance are crucial would have to use a restricted version of AFRP
that can provide the necessary performance guarantees.

Another line of interesting research is to explore the relationship
between AFRP and hybrid modeling and simulation. A version of
AFRP with the numerical sophistication required for reliable and
efficient simulation would be a significant contribution to this com-
munity. A fairly recent development in the hybrid modeling area
is non-causal modeling(or “object-oriented” modeling5), where
models are expressed in terms ofnon-directedHybrid Differen-

5Because the modeling focuses on physical objects; not to be

tial Algebraic Equations (DAEs), making then more reusable and
declarative [7]. A successful example of such a non-causal mod-
eling language is Modelica [17]. It would be interesting to see if
such capabilities could be integrated smoothly into an AFRP-style
system. We believe that by addingsignal relationsas first class en-
tities in addition to signal functions we could integrate non-causal
models into our system, but the technical challenges for efficient
and sound numerical simulation would be substantial.

We are currently employing Ross Paterson’s syntactic sugar for ar-
rows [18] to facilitate writing AFRP programs. Compared with
previous versions of FRP, or languages like Lustre or Lucid Syn-
chrone, where function application syntax can be used even when
the applied function is stateful, the AFRP syntax sometimes seems
a bit clumsy. This is true in particular when simple mathematical
expressions such as integrals have to be broken up since integra-
tion is a stateful operation. It would be interesting to see if there
are other syntactical possibilities, possibly exploiting properties the
AFRP arrows enjoy beyond the standard arrow properties. How-
ever, being explicit about stateful vs. stateless function application
has its advantages, so it is not clear what the best trade-off is.

7 Conclusions

FRP is a novel way of programming interactive systems without re-
sorting to brute-force imperative approaches such as the IO monad
to express interaction. By extending traditional functional program-
ming with abstractions that express time flow, we can retain the el-
egance and modularity of traditional functional programming in a
domain where less expressive languages have predominated.

AFRP represents a new approach to the design of reactive lan-
guages. The use of arrows as the organizing abstraction for this
system lends both syntactic and semantic clarity to our language.
We have expanded the functionality of previous FRP implemen-
tations with flexible constructs for managing dynamic collections,
and first-class continuations that can capture signal functions that
are “in progress”. This approach is particularly well suited for sys-
tems that contain changing groups of elements that interact with
each other. Collection-based switching subsumes previous switch-
ing constructs and gives AFRP a significant advantage over other
synchronous reactive languages.

We have also explored the use of embedding, allowing the user to
have direct control over time flow within a component. While ex-
perimental and in some ways rather simplistic, this feature does
offer the user a way of controlling the fidelity of subsystems, which
is important for accurate simulation, as well as the ability to con-
struct multi-rate systems, which addresses an important operational
concern. Furthermore, it offers a restricted but robust form of time
transformation, without the performance problems encountered in
previous FRP implementations. This allows applications such as
simulators to speed up or slow down time flow as needed, for ex-
ample for real-time animation without affecting simulation fidelity.

These new AFRP constructs are demonstrated in a non-trivial ap-
plication domain that showcases the ability of our system to cap-
ture complex communication patterns among a dynamic collection
of objects. This example also shows how functional programming
can be used to capture complex system structures in a succinct and
reusable manner. Overall, we think AFRP has an expressive power
and semantic simplicity that makes AFRP programs easy to under-
stand even when describing structurally dynamic systems.

confused with object-oriented programming.
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Finally, we have described a new implementation of AFRP. This
implementation addresses the new features as well as optimizations
made possible by the continuation-based implementation style.
The implementation appears to have more predictable performance
characteristics than previous FRP implementations.
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Synchrone v2.0 – tutorial and reference manual.http://www-spi.lip6.fr/lu
id-syn
hrone/lu
id_syn
hrone_2.0_manual.ps, April 2001.

[23] Meurig Sage. Frantk: A declarative gui system for haskell. InPro-
ceedings of the ACM SIGPLAN International Conference on Func-
tional Programming (ICFP 2000), September 2000.

[24] Using Simulink version 4. The MathWorks, Inc.,http://www.mathworks.
om, June 2001.

[25] Zhanyong Wan and Paul Hudak. Functional Reactive Programming
from first principles. InProc. ACM SIGPLAN’00 Conference on Pro-
gramming Language Design and Implementation (PLDI’00), 2000.

[26] Zhanyong Wan, Walid Taha, and Paul Hudak. Real-time FRP. InIn-
ternational Conference on Functional Programming (ICFP’01), 2001.

[27] Zhanyong Wan, Walid Taha, and Paul Hudak. Event-driven FRP.
In Practical Aspects of Declarative Languages (PADL’02), January
2002.

64


